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Photometric methods are today probably the most popular approach to the 
quantitative determination of the amount of separated substance contained in a 
particular zone of a thin-layer chromatogram. Highly sophisticated instruments have 
been developed for this purpose. Many features of the design of these devices depend 
strongly upon an understandin g of the optical response of the chromatogram. The 
same applies also to the general use of photometric techniques outside the field of 
thin-layer chromatography (TLC) for the purpose of determining the amount of 
dispersed substance in a turbid gray support matrix. The term “turbid” applies to 
media, which exhibit not only absorption, but also internal scattering_ The term 
“grey” here indicates a near uniform optical response over the whole spectral range 
of concern, which may extend beyond the visible well into the ultraviolet_ Most of the 
media used in TLC belong to this class. 

An exact mathematical description of the optical properties of a turbid me- 
dium is all but impossible. Fortunately, a simplified theory had been developed in the 
thirties by the physicists Kubelka and Munk’, which yields results which are perfectly 
adequate for many practical applications. The Kubelka and Munk theory is based 
upon several simplifying assumptions. The two most important ones of these are the 
following: inside the turbid matrix light propagates only in either the forward or the 
backward direction, both of which are perpendicular to the surface of incidence. The 
medium itself is regarded as a thin homogeneous sheet with infinite extension. 

Another assumption, which is frequently made only tacitly, is that the medium 
has sufficient scattering power to abolish any existing collimation of the illuminating 
beam before it leaves the medium. Altemativeiy, it can be assumed that the collima- 
tion of the incident beam has been abolished already before it reaches the medium, 
e.g. by a diffusing plate placed immediately in front of the entrance aperture. 

If neither assumption is justified deviations from the predictions of the Kubelka 
and Munk theory will appear, which have to be taken into account. Corrections can 
be carried out by relatively simple procedures. However, this case is not part of the 
considerations of this paper. 

With these assumptions the originally three-dimensional caSe is reduced to a 
single dimension. Each surface element of the sheet acts with respect to the light 
leaving the medium as a Lambert source with cosine intensity distribution. This 
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distribution has to be taken into account, when derermining the optical response of 
the layer with the help of instruments, the entrance aperture of which is not in im- 
mediate contact with the surface of the medium. 

The Kubelka and Munk theory results in a relatively simple pair of first order 
differential equations for the forwards and backwards travelling intensities with the 
distance x from the entrance surface as variable and with two intrinsic parameters: 
the coefficient of scatter, SO and the coefficient of absorption, K,,. The equations can, 
without difficulties, be solved in closed form. The resulting expressions are however 
cumbersome and not very transparent: they are thus not very suitable for routine 
use. Drawing upon techniques borrowed from electrical transmission line technology 
simpler expressions can be derived2, but even these are too complicated for every day 
purposes_ 

Easier to use are graphical solutions of the Kubelka and Munk equations. 
They are mostly displayed as families of curves with S as parameter and K as contin- 
uous variable3e4. The drawback of the graphica approach is limited accuracy. The 
curves are highly non-linear and. therefore, difficult to impIement by eIectrica1 circuits 
in instrument design. When using graphical methods it shouId be noted, that the total 
scatter S and the total absorption K of the medium have to be entered into the graph. 
Both are proportional to the thickness X of the turbid layer: 

s = so-X (1) 

K = K,,-X (2) 

The proportion of light ener_gy, which leaves the medium at the far side at x = X is 
called the “transmittance” AT; and that which is returned at the surface near the 
source is called the “reflectance” AR_ Coefficient of back scatter might be a less 
ambiguous designation for the latter. Light, which is specularly reflected from the 
illuminated surface has to be discounted from the illuminating intensity_ 

INVERSION OF THE KUBELKA AND MUNK SOLUTIONS 

Many practical applications of the Kubelka and Munk theory are concerned 
with the determination of the amount of a selectively absorbing substance dispersed 
in a turbid gray support matrix. In most cases it is assumed that the distribution of 
the measured material in the matrix is uniform with respect to depth x. In chromato- 
=“raphic applications this assumption is usually fairly close to reality. Considerable 
errors can however, be incurred, if the concentration distribution c (_..) is strongly 
non-uniform5. 

In most cases of practical interest it can also be assumed, that the presence of 
the investigated substance alters only the coefficient of absorption K, but does not 
affect significantly the value of S_ Concentration is here defined as the amount of 
dispersed material contained in a parallel epiped of medium material with unit surface 
area. 

For low to medium concentrations c the absorbance K changes by an amount 
AK which is proportional to c. 

AK =ac (3) 
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The essence of the problem is to determine c from a measured change AA in optical 
response from that of the blank medium AO. The symbol A without index letter is 
intended to designate either transmittance AT or reflectance AR as needed. Deter- 
mining c from AA amounts to the task of inverting the function A (K, S) and to bring 
it into the form: 

AK = IJJ [AA, A,, S] (4) 

Inversion of the rigid solution of the Kubelka and Munk equations in closed form is 
not feasible. To facilitate the problem a number of approximate solutions has been 
developed by different authors 6*7 but none of them proved fully satisfactory. 

Working on the development of a high-performance photometerS especially 
for use in quantitative chromatography it was empirically found, that a logarithmic 
plot of d A (c) over c produced a straight line for a wide range of media with different 
degrees of scatter and basic absorption. AA (c) designates here the change in transmit- 
tance of the medium due to the presence of separated material in concentration c. 
Treiberg and Goodalli” arrived, also empirically, at very similar conclusions. 

More elusive was the search for a relationship with similar properties, which 
would be applicable to measurements in the reflexion mode. Here some theoretical 
mathematical ground work had to be done to guide the empirical approach. But 
finally it was found that the simple reciprocal of reflectance yielded a linear charac- 
teristic, equal to or even better than the logarithm of transmittance”. For analytical 
purposes it is of course desirable, that the instruments employed have a characteristic, 
which is linear in terms of the measured quantity. Both linearizing transforms men- 
tioned offer the big advantage, that they can be easily implemented by standard analog 
or digital circuitry. 

A LINEAR APPROXIMATION TO THE KUBELKA AND MUNK EQUATIONS 

On the basis of the findings reported above both transmittance and reflectance 
can be represented by families of straight lines with the absorption K as continuous 
variable and scatter S as parameter. 

In I AT K S) I = 0: (Sk--K -t B (S), (5) 

l/A,(K,S)=a(S),-KtB(S), (6) 

Eqn. (5) can alternatively be written in exponential form. 

exp lY(%l-exp b(%-4 = B(%exp b(Sh--Kl (7) 

In this form the equation resembles the law of Beer and Lambert .for non-turbid 
media and can, in a sense, be regarded as a generalization of the latter. Both coef- 
ficients B(S), and a (S), are functions of S, and both converge for media without 
scatter (the domain of the Beer-Lambert law) to unity. 

For practical application the parameters 01 (S) and @ (S) from eqns. 5 and 6 
were determined by computing the best (in the least mean square sense) linear ap- 
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proximation to the sequence of values obtained from an exact solution of the Kubelka 
and Munk equations. The calculations were carried out for the range: 

0.25 < K < 5 (8) 

The results obtained are listed in Tables I and II and plotted in Figs. 1 and 2. Shown in 
the tables are not only the values of slope a(S) and intercept B(S) for the linear ap- 
proximation, but also the (absolute) mean of the error and the magnitude of the error 
for K = 0.5. In a few cases the error value is given for other values of K, which are 
then shown in the footnotes to the Tables. In all cases the error values are shown in 
percents of the correct value. It can be seen that the linear approximation for trans- 
mittance is the best for media with little scattering power. For reflectance the opposite 
holds: here the approximation improves for strongly scattering media. 

TABLE I 

CALCULATED SLOPES AND INTERCEPTS OF LEAST SQUARE LIKEAR APPROXIMA- 
TION (TRANSMITTANCE) 

Parameter Value 

0.0 
-1.00 
0.00 
0.00 

2.0 
-1.1009 
- 1.2888 

3.61 

0.25 0.5 0.75 
-1.0033 -1.Oli4 -1.0227 
-0.2307 -0.4305 -0.6076 

0.98 - 2.33 - 3.57’ 

2.25 2.5 2.75 
-1.1185 -1.1363 -1.1543 
-1.3989 -1.5030 -1.6020 

3.92 4.21 4.47 

1.0 1.25 
- 1.0361 -1.0514 
-0.7671 -0.9128 

2.00 2.47 

3.0 3.25 
-1.1723 -1.19036 
- 1.6964 - 1.7867 

4.71 4.93 

4.0 4.25 4.5 4.75 5.0 
- l-24.44 - 1.2623 - 1.280 1 - 1.2978 -1.3154 
-2.0369 -2.1145 -2.1896 -2.26239 -2.333 

5.51 5.68 5.68 5-99 6.10 

1.5 
- 1.0670 
- 1.0470 

2.89 

3.50 
- 1.2084 
- 1.8733 

5.14 

1.75 
- 1.0837 
-1.1719 

3.27 

3.75 
- I.2265 
-1.9566 

5.34 

l Error value for K = 0.25; b all other cases the error given refers to K = 0.5. For values 0.50 < 
K s 5 and 0.75 < K < 5, respectively, substantially smaller errors are obtained. 

In almost all cases the error of the approximation increases when K becomes 
very small. For this reason the error for K = 0.25 is almost always substantially 
larger than for K = 0.5, whilst for K > 0.75 error values are obtained, which are 
typically 40% and less of the value shown as maximum error. 

The Kubelka and Munk equations have over the years proved their usefulness 
for many technical applications involving optical measurements on turbid media in 
general and on TL-chromatograms in particular_ This despite the fact, that the form 
in which the solutions to these equations are commonly presented, is rather 
cumbersome and difficult to handle. The linearized expressions given in this paper do 
not suffer from this drawback_ They are easy to apply even without any background 
in mathematics and optics and thus convenient for routine use by the practical chro- 
matographer. Equally important is also the ease, with which they can be incorporated 
into the design of photo-densitometers for quantitative chromatography. In this way 
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Fig. 1. The &solute v&m of coefficients a(.% and #%% of the IinWaPProximation: In l&l = 
K . a(~)= + p(s)=, plotted a~ function of the coefficient of scatter S of the medium. 0, la(S)=1; 
0, IS(S)rl- 
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Fig. 2. The absolute values of the coefficients Q(S) R and B(S), of the linear approximation: 

U&=K-4%-?- as functions of the coefficient of scatter S of the medium, 
0 , la(S) I 0 n; , 
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scales which are linear in terms of concentration can easiIy be obtained and calibration 
procedures greatly simplified. 
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